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A Classical calculations 

Using the abbreviation 

𝑘 =
𝑞1 (1 −

𝑢2

𝑐2
)

4𝜋휀𝑜𝑟2  (1 − 
𝑢2

𝑐2
 𝑠𝑖𝑛2 𝛼)

3
2

     (A1) 

when a charge 𝑞1 moves at the constant velocity u as shown in Fig.1 in the sphere model 

article, then at the origin of the coordinate system shown in Fig. 1 the electric field associated 

with that charge is 

𝐄 = 𝑘 (
cos 𝜃
sin 𝜃
0
)     (A2) 

and the magnetic field in the same location is 

𝐁 =
𝐮 × 𝐄

𝑐2
=
𝑘

𝑐2
(

𝑢𝑥
𝑢𝑦
𝑢𝑧
) × (

cos 𝜃
sin 𝜃
0
) =

𝑘

𝑐2
(

−𝑢𝑧 sin 𝜃
𝑢𝑧 cos 𝜃

𝑢𝑥 sin 𝜃 − 𝑢𝑦 cos 𝜃
)     (A3) 

For the components of u, we have 

𝑢𝑥 = 𝑢𝑥𝑦 cos(𝜃 + 𝛾) = 𝑢 cos 𝛿 (cos 𝜃 cos 𝛾 − sin 𝜃 sin 𝛾) 

𝑢𝑦 = 𝑢𝑥𝑦 sin(𝜃 + 𝛾) = 𝑢 cos 𝛿 (sin 𝜃 cos 𝛾 + cos 𝜃 sin 𝛾) 

𝑢𝑧 = 𝑢 sin 𝛿       (A4) 

Inserting (A4) in (A3), we obtain 

𝐁 =
𝑘𝑢

𝑐2
(

−sin 𝛿 sin 𝜃
sin 𝛿 cos 𝜃

− cos 𝛿 sin2𝜃 sin 𝛾 − cos 𝛿 cos2𝜃 sin 𝛾
) =

𝑘𝑢

𝑐2
(
−sin 𝛿 sin 𝜃
sin 𝛿 cos 𝜃
− cos 𝛿 sin 𝛾

)     (A5) 

According to the Lorentz force law, the force on 𝑞2 in Σ is thus 

𝐅 = 𝑞2(𝐄 + 𝐯 × 𝐁) = 𝑞2𝑘 [(
cos 𝜃
sin 𝜃
0
) +

𝑢

𝑐2
(
𝑣
0
0
) × (

−sin 𝛿 sin 𝜃
sin 𝛿 cos 𝜃
− cos 𝛿 sin 𝛾

)]     (A6) 

Substituting for k from (A1) and calculating the cross product, we obtain:  

𝐅 =
𝑞1𝑞2 (1 −

𝑢2

𝑐2
)

4𝜋휀𝑜𝑟2  (1 − 
𝑢2

𝑐2
 𝑠𝑖𝑛2 𝛼)

3
2

(

 
 

cos 𝜃

sin 𝜃 +
𝑢𝑣

𝑐2
sin 𝛾 cos 𝛿

𝑢𝑣

𝑐2
sin 𝛿 cos 𝜃

)

 
 
     (A7) 

To obtain the magnitude of the force on 𝑞2 as measured by a co-moving spring balance, we 

need to make a relativistic force transformation to obtain the force in the rest frame of 𝑞2: 
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𝐹𝑥
′ = 𝐹𝑥 , 𝐹𝑦

′ = 𝐹𝑦 √1 − 𝑣2 𝑐2⁄⁄  and 𝐹𝑧
′ = 𝐹𝑧 √1 − 𝑣2 𝑐2⁄⁄ . We thus have 

𝐅′ =
𝑞2𝑞1 (1 −

𝑢2

𝑐2
)

4𝜋휀𝑜𝑟2  (1 − 
𝑢2

𝑐2
 𝑠𝑖𝑛2 𝛼)

3
2
√1 −

𝑣2

𝑐2

(

 
 
 
 cos 𝜃 √1 −

𝑣2

𝑐2

sin 𝜃 +
𝑢𝑣

𝑐2
sin 𝛾 cos 𝛿

𝑢𝑣

𝑐2
sin 𝛿 cos 𝜃 )

 
 
 
 

     (A8) 

To calculate the magnitude of this force, we first determine 

(

 
 
 
 cos 𝜃 √1 −

𝑣2

𝑐2

sin 𝜃 +
𝑢𝑣

𝑐2
sin 𝛾 cos 𝛿

𝑢𝑣

𝑐2
sin 𝛿 cos 𝜃 )

 
 
 
 

2

= cos2𝜃 −
𝑣2

𝑐2
cos2𝜃 + sin2𝜃

+ 2
𝑢𝑣

𝑐2
sin 𝜃 sin 𝛾 cos 𝛿 +

𝑢2𝑣2

𝑐4
sin2𝛾 cos2𝛿 +

𝑢2𝑣2

𝑐4
cos2𝜃 sin2𝛿

= 1 + 2
𝑢𝑣

𝑐2
sin 𝜃 sin 𝛾 cos 𝛿 +

𝑢2𝑣2

𝑐4
sin2𝜃sin2𝛾 cos2𝛿

−
𝑢2𝑣2

𝑐4
sin2𝜃 sin2𝛾 cos2𝛿 +

𝑢2𝑣2

𝑐4
sin2𝛾 cos2𝛿 +

𝑢2𝑣2

𝑐4
cos2𝜃 sin2𝛿

−
𝑣2

𝑐2
cos2𝜃

= (1 +
𝑢𝑣

𝑐2
sin 𝜃 sin 𝛾 cos 𝛿)

2

−
𝑣2

𝑐2
cos2𝜃 (1 −

𝑢2

𝑐2
sin2𝛿 −

𝑢2

𝑐2
sin2𝛾 cos2𝛿)

= (1 +
𝑢𝑣

𝑐2
sin 𝜃 sin 𝛾 cos 𝛿)

2

−
𝑣2

𝑐2
cos2𝜃 (1 −

𝑢2

𝑐2
+
𝑢2

𝑐2
cos2𝛿 −

𝑢2

𝑐2
cos2𝛿 +

𝑢2

𝑐2
cos2𝛾  cos2𝛿)

= (1 +
𝑢𝑣

𝑐2
sin 𝜃 sin 𝛾 cos 𝛿)

2

−
𝑣2

𝑐2
cos2𝜃 (1 −

𝑢2

𝑐2
(1 − cos2𝛾 cos2𝛿))

= (1 +
𝑢𝑣

𝑐2
sin 𝜃 sin 𝛾 cos 𝛿)

2

−
𝑣2

𝑐2
cos2𝜃 (1 −

𝑢2

𝑐2
sin2𝛼)     (A9) 

From (A8) and (A9) we obtain the magnitude of the force (2) in the sphere model article 

Introduction: 

𝐹 = |𝐅′| =
𝑞1𝑞2 (1 −

𝑢2

𝑐2
)√(1 +

𝑢𝑣
𝑐2
sin 𝜃 sin 𝛾 cos 𝛿)

2

−
𝑣2

𝑐2
cos2𝜃 (1 −

𝑢2

𝑐2
sin2𝛼)

4𝜋휀𝑜𝑟2  (1 − 
𝑢2

𝑐2
 𝑠𝑖𝑛2 𝛼)

3
2
√1 −

𝑣2

𝑐2
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To obtain the direction in Σ of the force on 𝑞2 as measured by a co-moving spring balance, 

we need to bear in mind that, as seen from Σ, the x-component of 𝐅′ is length-contracted by 

the relativistic factor √1 − 𝑣2 𝑐2⁄ . We thus obtain the direction vector (3) from the 

Introduction: 

(

 
 
 

cos 𝜃 (1 −
𝑣2

𝑐2
)

sin 𝜃 +
𝑢𝑣

𝑐2
sin 𝛾 cos 𝛿

𝑢𝑣

𝑐2
sin 𝛿 cos 𝜃 )

 
 
 

 

B Density factor calculations 

I will determine the density factor 𝑑1̅̅ ̅ for a given constellation of two charges 𝑞1and 𝑞2 

moving at constant velocities u and v in Σ. Recall that, in Fig. 5 in the sphere model article, A 

is at the centre of the sphere on whose surface 𝑞2 is located. Let the number of sphere 

surfaces that cut through 𝐶𝐵̅̅ ̅̅  be m. If 𝑞1 took the time t to travel from A to C, we have 

𝐴𝐵̅̅ ̅̅ = 𝑐𝑡 =  
𝑚

𝜆𝛴
     (B1) 

and 

𝐴𝐶̅̅ ̅̅ = 𝑢𝑡     (B2) 

Applying the cosine rule to the triangle ABC in Fig. 5, with 𝛼 ∶= ⦨ (𝐫12; 𝐮) as defined in 

Section 1, we thus have 

𝑢2𝑡2 + 𝐶𝐵̅̅ ̅̅ 2 +  2𝑢𝑡𝐶𝐵̅̅ ̅̅  cos 𝛼 =  𝑐2𝑡2     (B3) 

Solving for t and discarding the negative solution, we obtain 

𝑡 =  
𝐶𝐵̅̅ ̅̅

𝑐
 (√1 − 

𝑢2

𝑐2
 sin2𝛼 −

𝑢

𝑐
 cos 𝛼 )

−1

    (B4) 

Using (B1) and (B4), we have 

𝜆1
< = 

𝑚

𝐶𝐵̅̅ ̅̅
=  
𝑐𝑡𝜆𝛴

𝐶𝐵̅̅ ̅̅
=  (√1 − 

𝑢2

𝑐2
 sin2𝛼 −

𝑢

𝑐
 cos 𝛼 )

−1

𝜆𝛴     (B5) 

In the same way, by applying the cosine rule to the triangle ACD, we obtain 

𝜆1
> = (√1 − 

𝑢2

𝑐2
 sin2𝛼 +

𝑢

𝑐
 cos 𝛼 )

−1

𝜆𝛴     (B6) 

It turns out that the density on the near side and the far side of 𝑞2 is independent of the 

number of sphere surfaces or the radius of the sphere surface on which 𝑞2 is located. It is thus 

constant on the near side and the far side of 𝑞2, respectively. 
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From (B5) and (B6), we finally obtain 

𝑑1̅̅ ̅ =  √𝑑1
< 𝑑1

> = √
𝜆1
<

𝜆𝛴
 
𝜆1
>

𝜆𝛴
 =  

1

√1 − 
𝑢2

𝑐2

     (B7) 

By applying the same procedure to 𝑞2, we find that 

𝜆2
< = (√1 − 

𝑣2

𝑐2
 sin2𝜃 +

𝑣

𝑐
 cos 𝜃 )

−1

𝜆𝛴     (B8) 

𝜆2
> = (√1 − 

𝑣2

𝑐2
 sin2𝜃 −

𝑣

𝑐
 cos 𝜃 )

−1

𝜆𝛴     (B9) 

𝑑2̅̅ ̅ =
1

√1 − 
𝑣2

𝑐2

     (B10) 

C Angle factor calculations 

By applying the sine rule to the triangle ABC in Fig. 6, we obtain: 

𝐴𝐵̅̅ ̅̅

sin 𝛼
=  

𝐴𝐶̅̅ ̅̅

sin (
𝜋
2 −  𝛽)

=  

𝑢
𝑐  𝐴𝐵
̅̅ ̅̅

cos 𝛽
     (C1) 

It follows that 

cos 𝛽 =  
𝑢

𝑐
 sin 𝛼      or     sin 𝛽 =  √1 − 

𝑢2

𝑐2
 sin2𝛼     (C2) 

The angle factor can now easily be calculated using (C2). Recall that it is the mean factor by 

which the trajectory taken by 𝑞1 information from one sphere surface to the next in Fig. 6 is 

different from the local perpendicular distance between those sphere surfaces. By ‘local 

perpendicular distance’ I mean the distance between the tangent planes to those surfaces 

along the line 𝐷𝐵̅̅ ̅̅ . This distance is well defined since those planes are all parallel to each 

other on the near and far side of 𝑞1, respectively. It can be seen in Fig. 6 that the required 

factor is the same for the near side of 𝑞1: 

𝑒1
< = 

1

sin 𝛽
=  

1

√1 − 
𝑢2

𝑐2
 sin2𝛼

     (C3) 

as it is for the far side of 𝑞1: 

𝑒1
> = 

1

sin 𝛽
=  

1

√1 − 
𝑢2

𝑐2
 sin2𝛼

     (C4) 
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Hence finally: 

𝑒1̅ = √𝑒1
< 𝑒1

> =
1

sin 𝛽
=

1

√1 − 
𝑢2

𝑐2
 sin2𝛼

     (C6) 

D Frequency factor calculations 

The frequency factor 𝑓1̅ introduced in the sphere model article depends on both the velocity u 

of 𝑞1 and the velocity v of 𝑞2. It is defined as the geometric mean of the frequency factors 𝑓1
< 

and 𝑓1
> associated with the near side and the far side of 𝑞1. 

 

Fig. 10 This diagram and those shown in subsequent figures are perspective drawings of the 

kind of three-dimensional situation shown in Fig. 1 in the sphere model article. Solid dots 

indicate points where lines meet or intersect. The point A is again at the centre of the 𝑞1 

sphere surface on which 𝑞2 is located. To calculate the frequency factor 𝑓1
<, we need to 

consider the 𝑞1 information sphere surface 𝑆< that intersects the line connecting 𝑞1 and 𝑞2 in 

a point E very close to B. More precisely, 𝐸𝐵̅̅ ̅̅ = ∆𝑟2
< = 1 𝜆2

<⁄ . The task is to determine how 

long it takes for 𝑆< and 𝑞2 to meet. 

I will first calculate the frequency factor 𝑓1
<. Recall that it is the factor by which the 𝑞1 

information transmission rate 휁1
< = 1 𝑡<⁄  is different from the static case. I thus need to 

determine the time 𝑡< which it takes for the information sphere surface 𝑆< shown in Fig. 10 

to reach 𝑞2. In Fig. 10, 𝑆< intersects the line connecting 𝑞1 and 𝑞2 in a point E very close to 

B such that 𝐸𝐵̅̅ ̅̅ = ∆𝑟2
< = 1 𝜆2

<⁄ = ∆𝑟 𝑑2
< < 2∆𝑟⁄ . 

Since the distance ∆𝑟 between neighbouring sphere surfaces is assumed to be extremely 

small compared to the distance r between 𝑞1 and 𝑞2, 𝐸𝐵̅̅ ̅̅   is also extremely small compared to 

r. We can thus approximate 𝑆<  in E by a plane 𝑆𝑝
<  characterized by the normal vector  

𝐧1
< = 

𝐜1
<

𝑐
      (D1) 

where 𝐜1
< is the velocity of 𝑞1 information arriving at 𝑞2 from A, as shown in Fig. 11. 
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Fig. 11 The line 𝐸𝐹̅̅ ̅̅  lies in the plane 𝑆𝑝
<, at a right angle to 𝐹𝐵̅̅ ̅̅ , which is perpendicular to 𝑆𝑝

< 

and represents the distance of 𝑆𝑝
<  from the origin of the coordinate system. 

The point F marks the intersection of 𝐴𝐵̅̅ ̅̅  with 𝑆𝑝
<, so 𝐹𝐵̅̅ ̅̅  is perpendicular to 𝑆𝑝

< and 

represents the distance of 𝑆𝑝
< from the origin of the coordinate system. The plane 𝑆𝑝

<, which 

moves in the direction of 𝐧1
< at the speed c, can thus be written as follows: 

𝐱𝐧1
< + 𝐵𝐹̅̅ ̅̅ −  𝑐𝑡 = 0     (D2) 

where x is a vector pointing to any point in 𝑆𝑝
<. To determine the time it takes for 𝑆𝑝

< to meet 

𝑞2, we just need to insert 𝑡 = 𝑡< and 𝐱 = (𝑣𝑡<, 0, 0) into (D2) and solve for 𝑡<. Before we do 

so, we need to work out 𝐧1
< and 𝐵𝐹̅̅ ̅̅ . In Fig. 12 

𝐰1
<  ∶=  𝐜1

< − 𝐮     (D3) 

 

Fig. 12 The vector 𝐧1
< can be calculated by first determining 𝐜1

<, which can in turn be 

expressed in terms of u and 𝐰1
<. The magnitude and direction of 𝐰1

< can be determined by 

means of elementary geometry. 
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We can thus write 

 𝐧1
< = 

𝐜1
<

𝑐
=  
𝐮 + 𝐰1

< 

𝑐
      (D4) 

We know that 𝐰1
< is parallel to 𝐫12, so 

𝐰1
<  = 𝑤1

< (
cos 𝜃
sin 𝜃
0
)     (D5) 

Also in Fig. 12, we can see that 

𝑤1
<

𝐶𝐵̅̅ ̅̅
=  

𝑐

𝐴𝐵̅̅ ̅̅
     (D6) 

Solving for 𝑤1
< and using (4), (B1), (B4) and (C2), we obtain 

𝑤1
< = 

𝐶𝐵̅̅ ̅̅ 𝑐

𝐴𝐵̅̅ ̅̅
= 𝑐 (√1 − 

𝑢2

𝑐2
 sin2𝛼 −

𝑢

𝑐
 cos 𝛼 ) = 𝑐 (sin 𝛽 − 

𝑢

𝑐
 cos 𝛿 cos 𝛾)     (D7) 

Using (A4), (D4), (D5) and (D7), we obtain: 

𝐧1
< =

𝐮 +𝐰1
< 

𝑐
=  

(

  
 

𝑢

𝑐
(cos 𝜃 cos 𝛾 − sin 𝜃 sin 𝛾) cos 𝛿 + (sin 𝛽 − 

𝑢

𝑐
 cos 𝛿 cos 𝛾) cos 𝜃

𝑢

𝑐
(sin 𝜃 cos 𝛾 + cos 𝜃 sin 𝛾) cos 𝛿 + (sin 𝛽 − 

𝑢

𝑐
 cos 𝛿 cos 𝛾) sin 𝜃

𝑢

𝑐
sin 𝛿 )

  
 

=

(

  
 

−
𝑢

𝑐
sin 𝜃 sin 𝛾 cos 𝛿 + cos 𝜃 sin 𝛽 

 
𝑢

𝑐
cos 𝜃 sin 𝛾 cos 𝛿 + sin 𝜃 sin 𝛽 

𝑢

𝑐
sin 𝛿 )

  
 
     (D8) 

For 𝐵𝐹̅̅ ̅̅ , we have 

𝐵𝐹̅̅ ̅̅ =  sin 𝛽 𝐸𝐵̅̅ ̅̅ =  sin 𝛽 ∆𝑟2
< = 

sin 𝛽

𝜆2
<       (D9) 

We can now insert (D8) and (D9) into (D2). If we also set 𝑡 = 𝑡< and 𝐱 = (𝑣𝑡<, 0, 0) in 

(D2), we obtain: 

𝑣𝑡< (−
𝑢

𝑐
sin 𝜃 sin 𝛾 cos 𝛿 + cos 𝜃 sin 𝛽) +

sin 𝛽

𝜆2
< − 𝑐𝑡< = 0     (D10) 

Rearranging, we have 

𝑐𝑡< +  𝑣𝑡< (
𝑢

𝑐
sin 𝜃 sin 𝛾 cos 𝛿 − cos 𝜃 sin 𝛽) =

sin 𝛽

𝜆2
<      (D11) 

Solving for 𝑡< and using (B8) for 𝜆2
<, we obtain: 
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𝑡< = 
∆𝑟

𝑐
 

sin 𝛽 (√1 −
𝑣2

𝑐2
sin2𝜃 +

𝑣
𝑐 cos 𝜃)

1 +
𝑢𝑣
𝑐2
sin 𝜃 sin 𝛾 cos 𝛿 −

𝑣
𝑐 cos 𝜃 sin 𝛽

     (D12) 

Now 휁1
< = 1 𝑡<⁄  is the 𝑞1 information transmission rate and 휁Σ = 𝑐 Δ𝑟⁄  is the same rate in the 

static case. We thus obtain 

𝑓1
< =

휁1
<

휁Σ
= 
1 +

𝑢𝑣
𝑐2
sin 𝜃 sin 𝛾 cos 𝛿 −

𝑣
𝑐 cos 𝜃 sin 𝛽

sin 𝛽 (√1 −
𝑣2

𝑐2
sin2𝜃 +

𝑣
𝑐 cos 𝜃)

     (D13) 

We can use the same method to obtain 𝐧1
> and 𝑓1

>. However, in this case we have to define 

𝑆𝑝
> as a plane which approaches 𝑞2 at c from the far side of 𝑞2, as shown in Fig. 13. 

In terms of the sphere model, this does not mean that 𝑞1 information is approaching B from 

some distant point on the far side of 𝑞2. Rather, it means that the information arriving at B 

from 𝑞1 includes full information not just about 𝐧1
< but also about 𝐧1

>. 

The plane equation is now 

𝐱𝐧1
> + 𝐵𝐻̅̅ ̅̅ − 𝑐𝑡 = 0     (D14) 

𝐵𝐺̅̅ ̅̅ = ∆𝑟2
>, so 

𝐵𝐻̅̅ ̅̅ = sin 𝛽 𝐵𝐺̅̅ ̅̅ = sin 𝛽 ∆𝑟2
> = 

sin 𝛽

𝜆2
>      (D15) 

 

Fig. 13 To obtain 𝐧1
> and 𝑓1

>, we have to define 𝑆𝑝
> as a plane which approaches 𝑞2 at c from 

the far side of 𝑞2. 

We can work out 𝐧1
> in the same way as 𝐧1

<, using 𝐰1
> in Fig. 12 instead of 𝐰1

<. We obtain 
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𝐧1
> = 

(

  
 

−
𝑢

𝑐
sin 𝜃 sin 𝛾 cos 𝛿 − cos 𝜃 sin 𝛽 

 
𝑢

𝑐
cos 𝜃 sin 𝛾 cos 𝛿 − sin 𝜃 sin 𝛽 

𝑢

𝑐
sin 𝛿 )

  
 
     (D16) 

Proceeding in the same way as for 𝑓1
<, we obtain 

𝑓1
> =

휁1
>

휁Σ
= 
1 +

𝑢𝑣
𝑐2
sin 𝜃 sin 𝛾 cos 𝛿 +

𝑣
𝑐 cos 𝜃 sin 𝛽

sin 𝛽 (√1 −
𝑣2

𝑐2
sin2𝜃 −

𝑣
𝑐 cos 𝜃)

     (D17) 

and thus finally  

𝑓1̅ = √𝑓1
< 𝑓1

> =
√(1 +

𝑢𝑣
𝑐2
sin 𝜃 sin 𝛾 cos 𝛿)

2

−
𝑣2

𝑐2
cos2𝜃 sin2𝛽

sin 𝛽√1 −
𝑣2

𝑐2

     (D18) 

E The direction of the force 

I need to show that 

𝐚 ∶= 𝑒2
< (𝐧1

< −
𝐯

𝑐
)

̂
− 𝑒2

> (𝐧1
> −

𝐯

𝑐

̂
) ∥

(

 
 
 

cos 𝜃 (1 −
𝑣2

𝑐2
)

sin 𝜃 +
𝑢𝑣

𝑐2
sin 𝛾 cos 𝛿

𝑢𝑣

𝑐2
sin 𝛿 cos 𝜃 )

 
 
 

     (E1) 

We know that 

𝑒2
< = 1 cos∢(𝐧1

<; 𝐧1
< − 𝐯 𝑐⁄ )⁄ =

|𝐧1
<| |𝐧1

< −
𝐯
𝑐|

𝐧1
< (𝐧1

< −
𝐯
𝑐)
=
|𝐧1
< −

𝐯
𝑐|

1 − 𝑛1𝑥
< 𝑣
𝑐

     (E2) 

and 

𝑒2
> = 1 cos∢(𝐧1

>; 𝐧1
> − 𝐯 𝑐⁄ )⁄ =

|𝐧1
>| |𝐧1

> −
𝐯
𝑐|

𝐧1
> (𝐧1

> −
𝐯
𝑐)
=
|𝐧1
> −

𝐯
𝑐|

1 − 𝑛1𝑥
> 𝑣
𝑐

     (E3) 

Hence 

𝐚 =
1

1 − 𝑛1𝑥
< 𝑣
𝑐

(𝐧1
< −

𝐯

𝑐
) −

1

1 − 𝑛1𝑥
> 𝑣
𝑐

(𝐧1
> −

𝐯

𝑐
)     (E4) 

We can define a vector b that is parallel to a as follows: 

𝐛 ∶= (1 − 𝑛1𝑥
<
𝑣

𝑐
) (1 − 𝑛1𝑥

>
𝑣

𝑐
) 𝐚 = (1 − 𝑛1𝑥

>
𝑣

𝑐
) (𝐧1

< −
𝐯

𝑐
) − (1 − 𝑛1𝑥

<
𝑣

𝑐
) (𝐧1

> −
𝐯

𝑐
)     (E5) 
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I will show (E1) by proving that 

𝐛 ∥

(

 
 
 

cos 𝜃 (1 −
𝑣2

𝑐2
)

sin 𝜃 +
𝑢𝑣

𝑐2
sin 𝛾 cos 𝛿

𝑢𝑣

𝑐2
sin 𝛿 cos 𝜃 )

 
 
 

     (E6) 

For brevity, it is convenient to introduce the following abbreviations: 

𝑘1 =
𝑢

𝑐
sin 𝜃 sin 𝛾 cos 𝛿     (E7) 

𝑘2 =
𝑢

𝑐
cos 𝜃 sin 𝛾 cos 𝛿     (E8) 

𝑘3 = 1 + 𝑘1
𝑣

𝑐
= 1 +

𝑢𝑣

𝑐
sin 𝜃 sin 𝛾 cos 𝛿     (E9) 

Bearing in mind (D8) and (D16), we can then write 

𝐧1
< = (

−𝑘1 + cos 𝜃 sin 𝛽 
𝑘2  +  sin 𝜃 sin 𝛽 

𝑢

𝑐
sin 𝛿

)     (E10) 

and 

𝐧1
> = (

−𝑘1 − cos 𝜃 sin 𝛽 
𝑘2 − sin 𝜃 sin 𝛽 

𝑢

𝑐
sin 𝛿

)     (E11) 

We thus have for the components of b: 

𝑏𝑥 = (𝑘3 +
𝑣

𝑐
cos 𝜃 sin 𝛽 ) (−𝑘1 + cos 𝜃 sin 𝛽 −

𝑣

𝑐
 )

− (𝑘3 −
𝑣

𝑐
cos 𝜃 sin 𝛽 ) (−𝑘1 − cos 𝜃 sin 𝛽 −

𝑣

𝑐
 )

= 2 cos 𝜃 sin 𝛽 (𝑘3 −
𝑣

𝑐
𝑘1 −

𝑣2

𝑐2
)

=2 cos 𝜃 sin 𝛽  (1 +
𝑢𝑣

𝑐
sin 𝜃 sin 𝛾 cos 𝛿 −

𝑢𝑣

𝑐
sin 𝜃 sin 𝛾 cos 𝛿 −

𝑣2

𝑐2
)

= 2 sin 𝛽 cos 𝜃 (1 −
𝑣2

𝑐2
)     (E12) 
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𝑏𝑦 = (𝑘3 +
𝑣

𝑐
cos 𝜃 sin 𝛽 ) (𝑘2 + sin 𝜃 sin 𝛽 )– (𝑘3 −

𝑣

𝑐
cos 𝜃 sin 𝛽 ) (𝑘2 − sin 𝜃 sin 𝛽 )

= 2 sin 𝛽  (𝑘3 sin 𝜃 −
𝑣

𝑐
𝑘2 cos 𝜃)

= 2 sin 𝛽 (sin 𝜃 +
𝑢𝑣

𝑐
sin2 𝜃 sin 𝛾 cos 𝛿 +

𝑢𝑣

𝑐
cos2 𝜃 sin 𝛾 cos 𝛿)

= 2 sin 𝛽 (sin 𝜃 +
𝑢𝑣

𝑐
sin 𝛾 cos 𝛿)     (E13) 

𝑏𝑧 = (𝑘3 +
𝑣

𝑐
cos 𝜃 sin 𝛽 )

𝑢

𝑐
sin 𝛿 − (𝑘3 −

𝑣

𝑐
cos 𝜃 sin 𝛽 )

𝑢

𝑐
sin 𝛿

= 2 sin 𝛽
𝑢𝑣

𝑐
sin 𝛿 cos 𝜃      (E14) 

Collecting the results, we obtain 

𝐛 = 2 sin 𝛽

(

 
 
 

cos 𝜃 (1 −
𝑣2

𝑐2
)

sin 𝜃 +
𝑢𝑣

𝑐2
sin 𝛾 cos 𝛿

𝑢𝑣

𝑐2
sin 𝛿 cos 𝜃 )

 
 
 

     (E15) 

We have thus proved (E6) and, as a result, also (E1). 

 

F From length contraction to time dilation and the constancy of c 

a) From length contraction in Σ to time dilation in Σ. 

I would like to show that a light clock of any orientation moving at v through an inertial 

frame of reference Σ in which light propagates in isotropic conditions and clocks have been 

Einstein-adjusted ticks more slowly by the relativistic factor √1 − 𝑣2 𝑐2⁄ , as measured in Σ, 

than a light clock of identical construction which is stationary in Σ. 

I will assume that in Σ light propagates at the speed c in all directions, and that objects 

moving through Σ are shortened in the direction of movement by the relativistic factor 

√1 − 𝑣2 𝑐2⁄ . I will not assume anything about the speed of light in the moving system S. 

Fig. 16 shows a light clock represented by the triangle 𝑃2𝑃3𝑃5 moving at v through Σ: 

 

Fig. 16 The moving light clock is represented by the triangle 𝑃2𝑃3𝑃5. 
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The light is sent from 𝑃2 to 𝑃5 and back, so in Σ the light clock is inclined by an angle which 

is defined by a and the light clock height h. 

The light is sent out as 𝑃2 passes 𝑃1, and it arrives in 𝑃5 at the time 𝑡1, which is the moment 

shown in the diagram. It is then reflected and arrives back in 𝑃2 after the time 𝑡2, as 𝑃2 

reaches 𝑃4. 

We thus have 𝑃1𝑃2̅̅ ̅̅ ̅̅ = 𝑣𝑡1; 𝑃1𝑃5̅̅ ̅̅ ̅̅ = 𝑐𝑡1; 𝑃2𝑃4̅̅ ̅̅ ̅̅ = 𝑣𝑡2; and 𝑃5𝑃4̅̅ ̅̅ ̅̅ = 𝑐𝑡2 and therefore: 

(𝑣𝑡1 ± 𝑎)
2 + ℎ2 = 𝑐2𝑡1

2     (F1) 

and 

(𝑣𝑡2 ∓ 𝑎)
2 + ℎ2 = 𝑐2𝑡2

2     (F2) 

The combination of plus and minus signs depends on whether the light clock is oriented to 

the right or to the left in Fig. 16. From (F1) and (F2), it is possible to calculate the period 𝑇𝑆 

of the moving light clock as measured in Σ: 

𝑇𝑆 = 𝑡1 + 𝑡2 =
2𝑐√𝑎2 + ℎ2 (1 −

𝑣2

𝑐2
)

𝑐2 − 𝑣2
     (F3) 

Next we need to calculate the period 𝑇𝛴 of the light clock 𝑃2𝑃3𝑃5 after it has been brought to 

a halt in Σ. Its previously contracted base a is then extended by the relativistic factor to 

become 

𝑎

√1 −
𝑣2

𝑐2

     (F4) 

Moreover, 𝑃2𝑃5 is now equal to 𝑐𝑇𝛴 2⁄ , so we have: 

(
𝑐𝑇𝛴
2
)
2

= ℎ2 +
𝑎2

1 −
𝑣2

𝑐2

     (F5) 

It follows that 

𝑇𝛴 = 2
√
ℎ2 (1 −

𝑣2

𝑐2
) + 𝑎2

𝑐2 − 𝑣2
     (F6) 

and thus 

𝑇𝛴
𝑇𝑆
=

𝑐2 − 𝑣2

𝑐√𝑐2 − 𝑣2
= √1 −

𝑣2

𝑐2
     (F7) 

which is what I set out to prove. 
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If we assume that other kinds of clock behave in the same way as light clocks, then it follows 

that all clocks moving through Σ run slow by the relativistic factor compared to stationary 

clocks in Σ which they pass. 

b) From length contraction and time dilation in Σ to the constancy of the two-way speed of 

light in any inertial frame of reference. 

To calculate the two-way speed of light in the moving frame, we need to calculate the time t’ 

it takes for light to travel from 𝑃2 to 𝑃5 and back in Fig. 16 as measured by a clock at rest in S 

at 𝑃2, and the distance l’ from 𝑃2 to 𝑃5 and back as measured in S. Using (F3) and bearing in 

mind length contraction, we obtain for the two-way speed of light c’ as measured in S: 

𝑐′ = 
𝑙′

𝑡′
=

2√ℎ
2 +

𝑎2

1 −
𝑣2

𝑐2

𝑇𝑆√1 −
𝑣2

𝑐2

= 

2√
ℎ2 (1 −

𝑣2

𝑐2
) + 𝑎2

1 −
𝑣2

𝑐2

2𝑐√𝑎2 + ℎ2 (1 −
𝑣2

𝑐2
)

𝑐2 − 𝑣2
√1 −

𝑣2

𝑐2

= 𝑐    (F8) 

This completes the proof. The constancy of the one-way speed of light is a consequence of 

Einstein’s clock adjustment procedure, which ensures that light always travels at the same 

speed in opposite directions. ‘Speed’ means a purely formal ‘coordinate speed’ here since 

locally Einstein-adjusted clocks in any system S moving relative to Σ are not synchronized. 

The various dependencies are shown schematically below: 

 

 


