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Abstract: A model is presented which explains the forces between charges in uniform motion in a

novel way, without reference to magnetism or special relativity. Building on Coulomb’s law of

electrostatics, the model explains the magnitude and the direction of such forces in terms of

changes in the flow of information from one charge to the other resulting from their acceleration

histories. The model enables a deeper understanding of the forces between moving charges than

classical electromagnetism, which notably leaves the origin of the magnetic field unexplained. It

also offers fresh insights into the foundations of special relativity. In particular, the model provides

a simple and direct explanation of how the forces between charges in uniform motion are

transformed in a way that is consistent with length contraction. The model also implies that, in the

framework of special relativity, events with equal time coordinates are in general not simultaneous.

Some implications of this finding for causality, the “block universe” idea and the Andromeda

paradox are briefly discussed. VC 2018 Physics Essays Publication.

[http://dx.doi.org/10.4006/0836-1398-31.3.301]

Résumé: Un modèle est présenté qui propose une nouvelle explication des forces entre des

charges en mouvement uniforme, sans avoir recours au magnétisme ou à la relativité restreinte. À

partir de la loi de Coulomb de l’électrostatique, le modèle explique la magnitude et la direction de

telles forces par des modifications du flux d’informations d’une charge à l’autre résultant de

l’évolution passée de leurs accélérations respectives. Le modèle améliore la compréhension des

forces entre les charges en mouvement par rapport à l’électromagnétisme classique, qui notamment

n’explique pas l’origine du champ magnétique. De plus, il offre de nouvelles perspectives sur les

fondements de la relativité restreinte. En particulier, le modèle fournit une explication simple et

directe de la manière dont les forces entre des charges en mouvement uniforme se transforment

conformément à la contraction des longueurs. De plus, le modèle implique qu’en général, dans le

cadre de la relativité restreinte, les événements possédant les mêmes coordonnées dans le temps ne

sont en fait pas simultanés. Quelques implications de ce résultat pour la causalité, l’idée de

“l’univers-bloc” et le paradoxe d’Andromède sont brièvement discutées.
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I. INTRODUCTION

In classical electromagnetism, the equations describing

the interactions between moving charges involve nothing but

parameters describing the charges’ magnitudes, their relative

positions and their states of motion, the speed c at which

electric disturbances travel in empty space, and the constant

e0 from Coulomb’s law of electrostatics.1 The question thus

arises whether those equations can be developed from a

model of the interactions between charged particles based on

nothing but Coulomb’s law and the fact that electric distur-

bances travel at c. In this article, I will present such a model

for the case of two point charges moving at constant

velocities.

Let R be an inertial frame of reference in which, in the

absence of any medium, electric disturbances travel in iso-

tropic conditions from bodies at rest and clocks have been

Einstein-adjusted.2 Experience shows that in those condi-

tions electric disturbances travel at the speed c in all direc-

tions in R. Let q1 and q2 be two point charges at rest in R.

According to Coulomb’s law,

F ¼ q1q2

4pe0r2
r̂12; (1)

the magnitude of the force between the two charges depends

only on their magnitudes q1 and q2 and on the distance r
between them, and the force acts in the direction of the unit

vector r̂12 pointing from q1 to q2. Now consider the force on

q2 if q1 moves at the constant velocity u and q2 moves at the

constant velocity v as measured by an observer at rest in R.

Let the force be measured in the rest frame of q2, for exam-

ple, by a spring balance co-moving with q2. In classical elec-

tromagnetism, it is straightforward to calculate this force

using the concepts of the electric field and the magnetic field

and the transformations of special relativity (see, for exam-

ple, Ref. 1). To do so, for the purposes of this article, it is

convenient to choose a Cartesian coordinate system such that

q2 is at the origin, the velocity v points in the direction of the

x-axis, and the vector r12 from q1 to q2 lies in the xy-plane

(Fig. 1).a)Georg.Lentze@gmail.com
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In terms of this coordinate system, the magnitude of the force on q2 can be written as

F ¼
q1q2 1� u2

c2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ vu

c2
sin h sin c cos d

� �2

� v2

c2
cos2 h 1� u2

c2
sin2 a

� �s

4pe0r2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

r
1� u2

c2
sin2 a

� �3
2

(2)

and its direction in R, i.e., the direction of the co-moving

spring balance as measured in R, is given by the vector

cos h 1� v2

c2

� �
sin h þ uv

c2
sin c cos d

uv

c2
cos h sin d

0BBBBB@

1CCCCCA (3)

with h :¼ ]ðv; r12Þ c :¼ ]ð r12; uxyÞ d :¼ ]ðuxy; uÞ and

a :¼ ]ð r12; uÞ .
The angle a is not an independent parameter and has

been introduced for convenience only. It is related to c and d
as follows:

cos a ¼ cos c cos d: (4)

In this article, I will develop a model of the exchange of

information between charged particles that explains how

Coulomb’s law (1) is transformed into Eq. (2) and (3) in the

case of two charges moving at constant velocities in R. I

will do so without any reference to magnetism or special

relativity.

The significance of the model presented here lies in the

fact that it provides a simple and coherent explanation of the

forces between moving charges while classical electromag-

netism provides no such explanation. It is, for example, not

clear in classical electromagnetism why there should be

magnetic forces on moving charges that act in a direction

that is perpendicular to the velocity of those charges. Indeed,

as I will show later, there are good reasons for saying that in

general there are no such forces between moving charges. It

is also unclear why the magnetic constant l0 ¼ 1=e0c2 in

magnetic field equations includes the speed c at which elec-

tric disturbances propagate. In classical electromagnetism,

this is an unexplained empirical finding. Finally, the fact that

magnetic forces can turn into purely electric forces if consid-

ered from a different frame of reference underlines that, in

classical electromagnetism, the magnetic field does not cor-

respond to any physical reality but is merely part of a useful

mathematical formalism. This has prompted some authors to

declare that the magnetic field “is a fiction” and that a theory

of “electromagnetism without magnetism” should be devel-

oped.3 For overviews of such efforts, see Refs. 3 and 4.

In the model presented in this article, there is no mag-

netic field and there are no magnetic forces. Instead, the

forces between moving charges are the result of distortions

in the electric properties of the space surrounding charged

particles brought about by the particles’ past accelerations.

The directions in which information about these distortions

is communicated to other moving charges determine the

direction of the forces on those charges. The speed c makes

an appearance in the model solely as a result of the fact that

electric information is transmitted at c.

Some authors have suggested that magnetic forces in

the interactions between charged particles are best under-

stood as “relativistic effects” (see, for example, Refs. 5–7).

However, special relativity does not make the concepts of

the magnetic field and magnetic forces redundant: In the

framework of special relativity, magnetic fields are still

said to be present in any inertial frame of reference in

which charged particles move. Since in special relativity

any inertial frame of reference is as good as any other for

the description of electromagnetic phenomena, the origin

of magnetic fields and magnetic forces remains unex-

plained in classical electromagnetism even if special rela-

tivity is taken into account.

Another reason why special relativity does not provide a

satisfactory explanation of magnetic effects between moving

charged particles is that it is itself in need of an explanation.

For example, how does length contraction by the relativistic

factor come about? We know that a suitable transformation

of the forces between charged particles as a result of past

acceleration is a necessary condition for length contraction

to occur. The model presented in this article provides a very

simple and direct explanation of how such a transformation

comes about. The model thus goes some way toward

explaining the physical basis of special relativity—a quest

which some authors believe has been neglected in the

FIG. 1. (Color online) For any two point charges q1 and q2 moving at

constant velocities u and v in R, a Cartesian coordinate system can be cho-

sen such that q2 is at the origin, the velocity v points in the direction of the

x-axis, and the vector r12 from q1 to q2 lies in the xy-plane. The situation is

fully described by specifying q1 and q2, r, u and v and the following angles:

h :¼ ] v; r12ð Þ, c :¼ ] r12; uxy

� �
, and d :¼ ] uxy; u

� �
.
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traditional treatment of that theory (see Ref. 8 for an over-

view and Ref. 9 for a similar argument).

The model also sheds new light on the much-debated

concept of simultaneity in special relativity (see Ref. 10 for

an overview of those debates). It implies that the conditions

in which electric disturbances propagate are not isotropic in

all inertial frames of reference and that therefore in general

Einstein’s clock adjustment procedure as described by him

in 1905 (Ref. 2) is not a synchronization procedure. This

means that events with equal time coordinates as determined

by Einstein-adjusted clocks are in general not simultaneous.

The significance of the model presented in this article is

thus threefold:

First, it explains the forces between charges in uniform

motion in a simple and coherent manner while classical elec-

tromagnetism provides no such explanation.

Second, it can be used to show very simply and directly

that the forces between charges in uniform motion are

consistent with the length contraction of moving bodies in

inertial frames of reference in which clocks have been

Einstein-adjusted.

Third, it implies that in general events with equal time

coordinates as determined by Einstein-adjusted clocks are

not simultaneous.

I will now first present the new model, which I will call

the “sphere model.” I will then discuss an example which

illustrates how the sphere model explains the forces between

charges moving at constant velocities more simply and more

clearly than classical electromagnetism. I will conclude by

discussing how the model relates to special relativity.

II. OUTLINE OF THE MODEL

I will make the following assumptions:

(1) Locally at any point in time and space there is an iner-

tial frame of reference R in which electric disturbances,

such as light waves, propagate from bodies at rest in

isotropic conditions. This ensures that Einstein-

adjusted clocks at rest in R are synchronized.2,11 Note

that this first assumption is much weaker than the

assumption made in classical theory that locally such

isotropy pertains in any inertial frame of reference.

(2) The field of a point charge at rest in R can be repre-

sented by a series of concentric sphere surfaces, as

shown in cross section in Fig. 2. By the “field of a point

charge” I mean the properties of the space surrounding

the charge which are responsible for the electric forces

on other charges caused by the presence of the point

charge. The assumption that this field can be repre-

sented by a series of concentric sphere surfaces is con-

sistent with Coulomb’s law and also with the assumed

isotropy of the conditions in which electric disturban-

ces propagate from bodies at rest in R.

(3) For point charges at rest in R, the distance Dr between

any two neighboring sphere surfaces is the same. The

precise size of that distance is irrelevant in the sphere

model, but I will assume that it is extremely small

compared to the distances between charged particles

considered in classical electromagnetism. I will also

assume that the size of the point charge is extremely

small compared to Dr.

(4) Information about a point charge in R continually

spreads outward from the charge in all directions. This

assumption is consistent with the concept of retardation

in classical electromagnetism. In classical theory, the

magnitude, position, and velocity of a charge affect

other charges with a certain delay, given by the time it

takes for information on these parameters traveling at

the speed of light to reach the other charges. The same

parameters are also relevant in the sphere model, as

will be explained in more detail in Secs. III–V.

(5) Information about a point charge in R always takes the

same time Dt to traverse the space between two neigh-

boring sphere surfaces. This can be regarded as the fun-

damental sphere model law. It means that information

spreading out from a stationary point charge always

travels on information sphere surfaces expanding at

one and the same speed c :¼ Dr=Dt in R.

(6) The sphere surfaces associated with a point charge

always move at the velocity communicated to them by

information sphere surfaces associated with that charge

that pass over them. As a result, information spreading

out from moving point charges also travels on informa-

tion sphere surfaces expanding at c in R, and changes

in the state of motion of a point charge always ripple

through the sphere surfaces associated with that charge

at the speed c in R.

Together these six assumptions ensure that the sphere

model is consistent with the observed behavior of electric

disturbances spreading out from point charges at rest in R as

a result of a sudden acceleration. In the sphere model, what

happens in the event of such an acceleration is shown in

cross section in Fig. 3 for three successive times t0, t1,

and t2.

In Fig. 3, the highlighted surfaces indicate the location

of an electric disturbance, marked by a jump in sphere sur-

face densities, spreading outward through the sphere surfaces

at the speed c as a result of a sudden acceleration of a point

charge to a velocity v at the time t ¼ t0. Since electric infor-

mation always travels at c in R even if it originates from a

charge that already moves at a velocity v in R, sphere surface

disturbances also invariably travel at c in R, in accordance

FIG. 2. Schematic representation of the field of a point charge at rest in R
in the sphere model (cross section). The point charge is represented by the

small innermost sphere.
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with observations. This is illustrated in Fig. 4 for a charge

accelerated from a velocity v at t ¼ t0.

The highlighted sphere surfaces again show the location

of an electric disturbance spreading outward through the

sphere surfaces at the speed c in R. In the sphere model, it is

assumed that any two charges moving at one and the same

constant velocity in R are surrounded by the same kind of

sphere arrangement, as a result of the charges’ respective

acceleration histories.

I will now consider the interaction of a first charge q1

traveling at u in R with a second charge q2 traveling at v in

R, as shown in Fig. 5. The velocity v of q2, which might be

in a direction into or out of the plane defined by the page, is

not shown in Fig. 5. This is because, as will become clear in

the subsequent discussion, for some aspects of the interaction

of q1 with q2 the velocity of q2 is irrelevant.

In Fig. 5, A is at the centre of the q1 sphere surface on

which q2 is located. This means that the information about q1

arriving at q2 at the time t1 shown in Fig. 5 originated from A
at the “retarded time” t0, when q1 was at A. This information

travelled from A to B at the speed c in the same period of time

in which q1 travelled from A to C at the speed u.

From the point of view of q1, information leaving A at t0

and arriving in B at t1 travels in the direction defined by the

vector cn<1 � u ¼ c n<1 � u=c
� �

, which is parallel to DB.

Similarly, from the point of view of q1, information leaving

A at t0 and arriving in D at t1 travels in the direction defined

by the vector cn>1 � u ¼ c n>1 � u=c
� �

, which is also parallel

to DB. It is not just that the information seems to travel in

those two directions from the point of view of q1, it really

does so in a physical sense: If q1 were attached to a rod

moving at u and oriented in the direction DB in R, then q1

information traveling from A to B and from A to D would

travel along that rod. This means that information reaching

q2 traverses the q1 sphere surface arrangement in the direc-

tion DB.

In addition, the q1 information leaving A for B at the

retarded time t0 can be divided into two classes:

(a) Information about q1 on the side of the line AC on

which q2 is located at the time t1. I will call this the

“near (<) side” of q1.

(b) Information about q1 on the other side of the line AC. I

will call this the “far (>) side” of q1.

It is an essential aspect of the sphere model that informa-

tion about the q1 sphere arrangement from both the near side

and the far side of q1 at the retarded time t0 must be taken

into account to determine the force on q2 at the time t1. In

the sphere model, such information is encoded in two sphere

model parameters which depend on the velocity of q1: The

“density factor” and the “angle factor.” The way in which q1

information is communicated to q2 is encoded in a third

sphere model parameter, the “frequency factor,” which

depends on the velocity of q2 as well as that of q1.

III. THE DENSITY FACTOR

In Fig. 5, the sphere surface densities along the line DB
on the near and the far side of q1 are constant but different

from each other. Let k<1 be the near-side density and k>1 the

far-side density. The factors by which these densities are dif-

ferent from the sphere surface density kR :¼ 1=Dr when q1

is at rest in R are d<1 :¼ k<1 =kR and d>1 :¼ k>1 =kR. It turns out

that, in the sphere model, the parameter that matters is the

geometric mean of these two quantities

d1 :¼
ffiffiffiffiffiffiffiffiffiffiffi
d<1 d>1

q
: (5)

I will call d1 the density factor. The density factor is thus

the mean factor by which the density of q1 sphere surfaces in

the direction of the line connecting q1 and q2 at the time t1 is

different compared to when q1 is at rest in R. The density

FIG. 3. (Color online) Changes in a point charge’s sphere surface arrange-

ment occur when the charge is briefly accelerated to a velocity v in R. The

changes cause an electric disturbance (located at the highlighted sphere sur-

faces) that spreads outward at the speed c in R.

FIG. 4. (Color online) A brief acceleration of a point charge already in

motion in R causes an electric disturbance (located at the highlighted sphere

surfaces) to spread through the sphere surfaces at the speed c in R.

FIG. 5. (Color online) A is at the centre of the q1 sphere surface on which

q2 is located. The sphere surface density of q1 spheres surfaces along CB is

different from the sphere surface density along CD. The directions from A to

B and from A to D are represented by the unit vectors n<1 and n>1 .
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factor is also a local property of the q1 sphere surface

arrangement in A at the retarded time t0. In the sphere model,

it is this property which is communicated to q2 at the time t1

in B, where it influences the force on q2.

IV. THE ANGLE FACTOR

Another sphere model parameter that is different from

the static case when q1 moves at u is the angle b at which the

line connecting q1 and q2 intersects q1 sphere surfaces in the

plane defined by u and r12. This is shown in Fig. 6, where A
is again at the centre of the q1 sphere surface on which q2 is

located. The angle b is the same for the near side and the far

side of q1 since the triangle ABD is isosceles. It is also the

same for any q1 sphere surface since the basic geometry is

the same in each case.

In Fig. 6, it can be seen that, since b < p=2, the trajec-

tory taken by information traveling from q1 to B from one q1

sphere surface to the next is longer than the local perpendic-

ular distance between those sphere surfaces (defined as the

distance between the tangent planes to those surfaces along

the line DB). The factor by which it is longer for any two

sphere surfaces is the same because the basic geometry is the

same. If the factor by which it is longer on the near side of

q1 is e<1 ¼ 1= cos] n<1 ; n<1 � u=c
� �

¼ 1= sin b and the factor

on the far side is e>1 ¼ 1= cos] n>1 ; n>1 � u=c
� �

¼ 1= sin b,

we can again define a mean factor e1 as

e1 :¼
ffiffiffiffiffiffiffiffiffiffi
e<1 e>1

q
: (6)

I will call e1 the angle factor. The angle factor is thus the

mean factor by which the path between neighboring q1

sphere surfaces along the line connecting q1 and q2 is differ-

ent from the local perpendicular distance between the sphere

surfaces. Once again, the angle factor e1 is also a local prop-

erty of the q1 sphere surface arrangement in A at the retarded

time t0. Information about e1 thus reaches q2 at the time t1

in B.

V. THE FREQUENCY FACTOR

In Fig. 7, the focus is shifted to the immediate vicinity of

point B in Fig. 6 at the time t1. This is because the third

parameter to be introduced here concerns the way in which

the q1 information arriving at q2 interacts with q2. From the

sphere model, we know that the q1 information arriving at q2

is located on q1 information sphere surfaces which expand at

c in R. Any one such q1 information sphere surface will cross

successive q2 sphere surfaces along the line connecting q1

and q2 in the immediate vicinity of B at a particular

“information transmission rate,” which is liable to be differ-

ent from the rate fR :¼ 1=Dt in the static case. It is plausible

for the factor by which these rates are different to influence

the force on q2, and it turns out that this is indeed the case.

Before we determine this factor we need to remember that

we have to consider both near- and far-side parameters.

The near- and far-side unit vectors n<1 and n>1 shown in

Fig. 7 are the same as those shown in Figs. 5 and 6. In the

sphere model, it is assumed that information about both n<1
and n>1 is communicated from A to q2 such that q1 informa-

tion appears to arrive at q2 from those two directions, rather

than just from the direction given by n<1 . Each of these two

vectors is locally associated with a q1 information sphere

surface. In Fig. 7 these are indicated schematically as S< and

S>. The line connecting q1 and q2 intersects the q1 informa-

tion sphere surfaces S< and S> at the distance Dr<2 ¼ 1=k<2
and Dr>2 ¼ 1=k>2 from q2, respectively. Information carried

FIG. 7. (Color online) This is a representation of the situation in the imme-

diate vicinity of q2. The situation is three-dimensional since in general u, v

and the line connecting q1 and q2 do not lie in the same plane. In the sphere

model, q1 information reaches q2 locally in B from two directions, given by

the unit vectors n<1 and n>1 . The information is carried by information sphere

surfaces S< and S>, which take different times to reach q2 from their loca-

tions shown in the figure. To calculate those times, S< and S> can locally be

approximated by planes moving at the speed c toward the location of q2 at

the time t1.

FIG. 6. (Color online) The angle b at which the line connecting q1and q2

intersects q1 sphere surfaces in the plane defined by u and r12 is the same for

the near side and the far side of q1. The directions from A to B and from A to

D are again represented by the unit vectors n<1 and n>1 .
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by S< and S> takes a particular time, t< and t>, to reach q2,

which we can use to define the respective q1 information

transmission rates f<1 :¼ 1=t< and f>1 :¼ 1=t>. We can now

define f<1 and f>1 as the factors by which the respective rates

f<1 and f>1 are different from the rate fR ¼ 1=Dt that applies

when both q1 and q2 are at rest in R.

What matters for the magnitude of the force on q2 is,

once again, the geometric mean

f1 :¼
ffiffiffiffiffiffiffiffiffiffi
f<1 f>1

q
: (7)

I will call f1 the frequency factor. The frequency factor

is thus the mean factor by which the q1 information transmis-

sion rate is different from the rate that applies in the static

case. The frequency factor is the most complex of the three

parameters introduced here because it depends on both u

and v.

VI. MAIN FINDINGS

Having defined three relevant sphere model parameters

and the direction vectors n<1 and n>1 , I am now in a position

to formulate my main findings. My first main finding is that,

in the situation described in Section I, the magnitude of the

force on q2 as measured by a co-moving spring balance can

be expressed as follows:

F ¼ q1q2

4pe0r2

e1
2

d1
2

f1: (8)

My second main finding is that the direction of the force

on q2 as measured by a co-moving spring balance is parallel

to the vector

e<2
dn<1 � v

c

� �
� e>2
dn>1 � v

c

� �
; (9)

where, in analogy to the q1 near- and far-side angle factors

e<1 and e>1 , the coefficients e<2 and e>2 are the q2 near- and

far-side angle factors e<2 :¼ 1= cos] n<1 ; n<1 � v=c
� �

and

e>2 :¼ 1= cos] n>1 ; n>1 � v=c
� �

, respectively. It is plausible

for the direction of the force to be a combination of the unit

vectorsdn<1 � v=c anddn>1 � v=c since these vectors represent

the directions from which q1 information arrives at q2 from

the point of view of q2. This is true in the same physical

sense as explained previously for q1 information leaving q1

for q2 from the point of view of q1.

In the sphere model, the changes to Coulomb’s law in

the case of two moving charges are thus the result of changes

in the arrangement of sphere surfaces surrounding the

charges and associated changes in the flow of information

between the charges in R. They are not the result of magne-

tism as classically conceived or of the transformations of

special relativity.

It is straightforward to express d1, e1, f1, n<1 , and n>1 in

terms of the locations and velocities of the charges q1 and q2

defined in Sec. I. The results of these calculations are as

follows:

d1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2

c2

r ; (10)

e1 ¼
1

sin b
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2

c2
sin2a

r ; (11)

f1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ uv

c2
sin h sin c cos d

� �2

� v2

c2
cos2 h sin2 b

r
sin b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

r ; (12)

n<1 ¼

� u

c
sin h sin c cos d þ cos h sin b

u

c
cos h sin c cos d þ sin h sin b

u

c
sin d

0BBBB@
1CCCCA; (13)

n>1 ¼

� u

c
sin h sin c cos d� cos h sin b

u

c
cos h sin c cos d� sin h sin b

u

c
sin d

0BBBB@
1CCCCA: (14)

From these results, it can be seen by simple comparison

that Eq. (8) is equivalent to the classical expression (2).

Using Eqs. (13) and (14), it can also be shown that the vector

given in (9) is parallel to the classical result (3).

VII. CONCEPTUAL CLARITY

An illustration of the conceptual advantages of the

sphere model is provided by the case of u� vð Þ k r12. The

principle of relativity tells us that in this situation, shown in

Fig. 8, any effect on q2 must be in the direction of the line

connecting the two charges, since their relative movement is

FIG. 8. (Color online) In classical electromagnetism, the electric and mag-

netic forces acting on q2 when u� vð Þ k r12 combine in such a way that the

overall force is not parallel to r12. A and I are the retarded positions of q1

and q2, respectively. Information that leaves q1 in A at the retarded time t0
thus arrives at q2 at the time t1 shown in the illustration.
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along that line. We would thus expect a spring balance co-

moving with q2 to show a force in the direction of r12 in R.

In classical electromagnetism, the force on q2 is given

by the Lorentz force law

F ¼ q2 E þ v� Bð Þ
¼ Fe þ Fm

¼
q1q2 1� u2

c2

� �
4pe0r2 1� v2

c2
sin2 h

� �3
2

cos h

sin h 1� v2

c2

� �
0

0BBB@
1CCCA : (15)

As can be seen in Fig. 8 as well as in Eq. (15), it turns

out that this force is not in the direction of r12. This means

that the decomposition of the electromagnetic force into an

electric component determined by the electric field and a

magnetic component determined by the magnetic field does

not correspond to anything in the observed phenomena. In

order to obtain the direction of the force as measured by a

co-moving spring balance, which is also the direction in

which q2 would be accelerated in R if it were released from

the spring balance, a relativistic weighting factor has to be

introduced: The component of the force that is parallel to the

velocity v of q2, which in this case is the x-component, must

be multiplied by 1� v2=c2. Taking into account the relativis-

tic weighting factor, the direction of the force as measured

by a co-moving spring balance finally turns out to be parallel

to r12.

To obtain the magnitude of the force as shown by the

spring balance, we have to perform a relativistic force trans-

formation to calculate the force F0 in the rest frame of q2.

Exploiting the fact that in the situation under consideration

u sin a ¼ �v sin h, we obtain

F0j j ¼
q1q2 1� u2

c2

� �
4pe0r2 1� v2

c2
sin2 h

� �3
2

cos h

sin h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

r
0

0BB@
1CCA

								
								

¼
q1q2 1� u2

c2

� �
4pe0r2 1� u2

c2
sin2 a

� � : (16)

In terms of classical electromagnetism alone, it is

unclear why the force needs to be transformed in this way.

Now let me consider how the magnitude and direction of

the force on q2 are explained in the sphere model. The cor-

rect direction of the force can be read off Fig. 9 immediately

since it is clear that both n<1 � v=c and n>1 � v=c are parallel

to r12. This can of course also be calculated explicitly

using Eqs. (13) and (14), again exploiting the relationship

u sin a ¼ �v sin h

n<1 �
v

c
¼ sin b� v

c
cos h

� � cos h
sin h

0

0@ 1A; (17)

n>1 �
v

c
¼ � sin b þ v

c
cos h

� � cos h
sin h

0

0@ 1A: (18)

Hence, as per (9), the overall direction of the force is

also parallel to r12. In the sphere model this is the correct

direction because, from the point of view of q2, information

about q1 is arriving at q2 from that direction.

Finally, the magnitude of the force is given by

F ¼ q1q2

4pe0r2

e1
2

d1
2

f1 ¼
q1q2 1� u2

c2

� �
4pe0r2 1� u2

c2
sin2 a

� � : (19)

The magnitude and direction of the force are thus the

result of modifications in the q1 and q2 sphere arrange-

ments and associated changes in the flow of information

from q1 to q2, as captured in the sphere model parameters

d1, e1, and f1 and the direction vectors n<1 and n>1 . The

speed c enters into the direction and the magnitude of the

force solely because electric information in R is transmitted

at the speed c. This is highly plausible and contrasts with

the enigmatic role played by c in magnetic field equations

in classical electromagnetism.

VIII. RELATIONSHIP WITH SPECIAL RELATIVITY

There are two ways in which the sphere model is linked

to special relativity. The first is that it provides a simple and

direct explanation of the forces between moving charges that

is consistent with length contraction.

In the sphere model, if two stationary charges q1 and q2

are separated by r in R and are then both accelerated in the

direction of r12 to the same velocity v, then as per Eq. (19)

FIG. 9. (Color online) The situation shown here is the same as in Fig. 8

but with the addition of relevant sphere model elements. A, B, C, D, and I
are defined as before, and c<1 ¼ cn<1 and c>1 ¼ cn>1 indicate the directions

from which information originating from A arrives at q2 from the point

of view of an observer at rest in R. From the point of view of q2, the

information arrives from the directions c<1 � v ¼ c n<1 � v=c
� �

and

c>1 � v ¼ c n>1 � v=c
� �

, which are both parallel to r12.
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the magnitude of the force between them as measured by co-

moving spring balances is

F ¼
q1q2 1� v2

c2

� �
4pe0r2

: (20)

Consequently, if the force between the moving q1 and q2

as measured by co-moving spring balances is to be the same

as it was between the stationary q1 and q2, then the distance

between them in terms of R coordinates must be reduced by

the relativistic factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
.

The sphere model thus provides a partial explanation of

length contraction. The sphere model also implies the inde-

pendence of the speed of light from the speed of the source

of the light in R. Together with length contraction, this

implies time dilation by the relativistic factor in R, provided

movement in R affects the rate at which any kind of clock

ticks in the same way. As shown, for example, in Ref. 12,

from length contraction and time dilation in R the whole

apparatus of special relativity follows, including the con-

stancy of the speed of light for any observer using Einstein-

adjusted clocks.

The second way in which the sphere model is linked to

special relativity is that it sheds new light on the concept of

simultaneity in that theory. It is widely acknowledged that

the definition of time coordinates in special relativity is, at

least in part, a matter of convention (see, for example, the

discussions of this issue in Refs. 2 and 12–15). Indeed, any

community of people, such as physicists, is free to adjust

clocks any way they like. As for example explained in

Refs. 13, 14, and 16, physicists have good reasons to adopt

Einstein’s clock adjustment procedure using light signals: It

leads to the familiar symmetric laws of physics in all inertial

frames of reference, which are conveniently connected via

the Lorentz transformations.

What is perhaps less widely appreciated is that not every

clock adjustment procedure is a synchronization procedure.

One of the conditions that must be met for a clock adjust-

ment procedure using signals to qualify as a synchronization

procedure is the isotropy of the conditions in which the sig-

nals used propagate. As Einstein said in 1910 (Ref. 11), the

“means of sending signals” in his clock adjustment proce-

dure “must be such that we have no reason to believe that the

phenomena of signal transmission in the direction AB differ

in any way from the phenomena of signal transmission in the

direction BA.”

The sphere model implies that this condition is not met

in all inertial frames of reference if Einstein’s clock adjust-

ment procedure is used. More precisely, it implies that, if the

condition is met locally in a first inertial frame of reference

R, then it is not met in other inertial frames of reference that

move relative to the first. The reason is that, in the sphere

model, the acceleration of a charged particle from rest in R
creates anisotropic conditions in the arrangement of sphere

surfaces surrounding that particle.

This lack of isotropy does not invalidate any of the

results or predictions of special relativity. It merely means

that, in special relativity, events with equal time coordinates

are in general not simultaneous. This insight has important

consequences for the correct interpretation of special rela-

tivity. It is for example not the case that, in the framework

of special relativity, arbitrary large velocities in R would

lead to a reversal of cause and effect or time travel into the

past, as for example suggested in Ref. 13. Such an impres-

sion can only arise if equal time coordinates in special rela-

tivity are thought to invariably express a relationship of

simultaneity. Similarly, the idea that we live in a “block uni-

verse” in which the past and the future are entirely given17

is a result of the misguided idea that equal time coordinates

in special relativity invariably express a relationship of

simultaneity.

Finally, the sphere model provides a simple resolution

of the Andromeda paradox. In the Andromeda paradox as

set out by Penrose,18 if two people walking past each other

both use Einstein-adjusted clocks, they might subsequently

disagree by a matter of days over whether an event in the

Andromeda galaxy had already occurred when they passed

each other. In the sphere model, there is no substance to

their disagreement: In general equal time coordinates as

defined by Einstein-adjusted clocks do not imply a relation-

ship of simultaneity. Therefore, the two people’s time co-

ordinates cannot be used to determine whether or not the

event had already occurred by the time of their chance

encounter.

The sphere model is fully consistent with special relativ-

ity as it leads to exactly the same forces between charges in

uniform motion in R as classical relativistic electromagne-

tism. This also means that it is consistent with the principle

of relativity as long as Einstein-adjusted clocks are used in

all inertial frames of reference. The sphere model can thus

be used in any inertial frame of reference in which clocks

have been Einstein-adjusted, not just in R. However, in

frames other than R the spheres do not have the same physi-

cal significance as in R but are just a mathematical device

that can be used to produce the empirically correct result.

IX. CONCLUSION

The model presented in this article sheds new light on

the nature of the forces between two charged particles q1 and

q2 moving at constant velocities. The sphere model explains

the magnitude and the direction of such forces in terms of

changes in the sphere surface arrangements surrounding the

charges and associated changes in the flow of information

between them. Those changes, which become more pro-

nounced as the speed of the charges in R approaches c, are

caused by the fact that in R electric information is transmit-

ted at the finite speed c.

In the sphere model, the magnitude of the force on q2 as

measured by a co-moving spring balance takes the form of a

simple and plausible generalization of Coulomb’s law. The

direction of the force is a combination of two vectors which

represent the directions from which q1 information arrives at

q2. The forces between moving charges are thus explained in

a way which is both simpler and much more plausible than

the classical route via the magnetic field, whose origin

remains unexplained in classical electromagnetism.
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The sphere model is fully consistent with the results and

predictions of special relativity. Indeed, it provides a simple

and plausible explanation of how the forces between moving

charges are transformed in a way which is consistent with

length contraction. The sphere model also implies the inde-

pendence of the speed of electric disturbances from the speed

of the source of those disturbances. From this combined with

length contraction, the whole apparatus of special relativity

follows, provided movement in R affects the rate at which

any kind of clock ticks in the same way. Finally, the sphere

model implies that in general events with equal time coordi-

nates as determined in accordance with Einstein’s clock

adjustment procedure are not simultaneous. This insight is

important for the correct interpretation of special relativity.

However, it does not mean that it is necessary or even desir-

able for physicists to adopt time and space coordinates dif-

ferent from those used in special relativity. This is not just

because Einstein clock adjustment leads to the familiar laws

of physics in all inertial frames, but also because it is difficult

or impossible to know in which frame of reference light sig-

nals (or other signals) locally propagate in isotropic condi-

tions. As a result, the sphere model may not change much in

the way physicists do physics, but I hope that it can help to

deepen our understanding of the physical world.
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